19. $\displaystyle y = c_1x^{-1} + c_2x^{-3}.$
21. $\displaystyle y = c_1\sqrt{x} + c_2x^3.$ 23. $\displaystyle y=\frac{x^4}{2} + c_1x^2 + c_2x^3.$ 25. $\displaystyle y = x\exp(x)+c_1x + c_2x^2. $ 27. $\displaystyle y = c_1\cos(\log|x^2|) + c_2\sin(\log|x^2|). $ 29. $\displaystyle y = c_1x^2\cos(\log|x^2|) + c_2x^2\sin(\log|x^2|). $ 31. $\displaystyle y = \frac{c_1}{(x+2)^2} + \frac{c_2}{(x+2)^4}. $ 33. -1 is regular, -2 is regular. 35. 0 is irregular. 37. -1 is regular, 1 is regular. 39. $2\pi n$ is regular for all integer $n$. 41. $0 < |x| < \infty$ 43. $0 < |x-1| < 2$ 45. -1 and -3 47. $1 \pm i\sqrt{3}$ 49. $-1 \pm \sqrt{11}$ 51. $$\frac{\partial u}{\partial x} = \sin(\phi)\cos(\theta)\frac{\partial u}{\partial \rho} - \frac{\cos(\theta)}{\rho \sin(\phi)} \frac{\partial u}{\partial \theta} + \frac{\cos(\theta)}{\rho} \frac{\partial u}{\partial \phi} $$ 53. $$ \frac{\partial u}{\partial z} = \cos(\phi)\frac{\partial u}{\partial \rho} - \frac{\sin(\phi)}{\rho}\frac{\partial u}{\partial \phi} $$ 55. $$ \begin{align} \frac{\partial^2 u}{\partial y^2} = &\sin^2(\theta)\sin^2(\phi)\frac{\partial^2 u}{\partial \rho^2} + \frac{\cos^2(\theta)}{\rho^2\sin^2(\phi)}\frac{\partial^2 u}{\partial \theta^2} + \frac{\sin^2(\theta)\cos^2(\phi)}{\rho^2}\frac{\partial^2 u}{\partial \phi^2} \\ &+ \frac{2\sin(\theta)\cos(\theta)}{\rho}\frac{\partial^2 u}{\partial \rho \partial \theta} + \frac{2\sin^2(\theta)\sin(\phi)\cos(\phi)}{\rho} \frac{\partial^2 u}{\partial \rho \partial \phi} + \frac{2\sin(\theta)\cos(\theta)\cos(\phi)}{\rho^2\sin(\phi)} \frac{\partial^2 u}{\partial \theta \partial \phi} \\ &+ \frac{\cos^2(\theta)+\sin^2(\theta)\cos^2(\phi)}{\rho}\frac{\partial u}{\partial \rho} - \frac{2\sin(\theta)\cos(\theta)}{\rho^2\sin^2(\phi)}\frac{\partial u}{\partial \theta} + \frac{\cos^2(\theta)\cos(\phi)-2\sin^2(\theta)\sin^2(\phi)\cos(\phi)}{\rho^2 \sin(\phi)}\frac{\partial u}{\partial \phi} \end{align} $$ 57. $$ \frac{\partial^2 u}{\partial \rho^2} + \frac{2}{\rho}\frac{\partial u}{\partial \rho} + \frac{1}{\rho^2\sin(\phi)} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{\rho^2}\frac{\partial^2 u}{\partial \phi^2} + \frac{\cos(\phi)}{\rho^2 \sin(\phi)}\frac{\partial u}{\partial \phi} =0 $$ 59. $\displaystyle y(x)=(2e^2)x\exp(-2x) = 2x\exp(2-2x)$ 61. $\displaystyle y(x) = \exp(-x)\cos(2x) + \frac{2e-\cos(2)}{\sin(2)}\exp(-x)\sin(2x) $ 63. $\displaystyle x_1 = \frac{n\pi}{2}$ for any integer $n$ 65. $\displaystyle \alpha = (n\pi)^2$ for any integer $n$ 67. $\displaystyle \alpha = 4+(n\pi)^2$ for any integer $n$ 69. $$ \begin{align} T''(t)X(x) &= cT(t)X''(x) \\ \frac{T''(t)X(x)}{T(t)X(x)} & = \frac{cT(t)X''(x)}{T(t)X(x)} \\ \frac{T''(t)}{T(t)}&=\frac{cX''(x)}{X(x)} \end{align}$$ Now since the only way a function of $t$ alone can equal a function of $x$ alone is if they are constant. So we have $$ \frac{T''(t)}{T(t)}=\frac{cX''(x)}{X(x)}=\lambda $$ and so we have the two ordinary differential equations $$ \begin{align} T''(t)-\lambda T(t) &= 0 \\ cX''(x)-\lambda X(x) &=0 \end{align} $$