First Order Linear Systems of Equations
Additional Examples
$$ \begin{align} x' &= 7x - 13y,\qquad &x(0) = -2 \\ y' &= 2x - 3y,\qquad &y(0) = -4 \end{align} $$ In what follows, we will use capital letter notation for the Laplace transform, i.e. $ {\mathcal L}\{x(t)\} = X(s)$ and $ {\mathcal L}\{y(t)\} = Y(s).$
STEP 1: Take the Laplace tranform of both sides (of both equations) $$ \begin{align} sX + 2 &= 7X - 13Y \\ sY + 4 &= 2X - 3Y \end{align} $$ STEP 2: Solve for $ X $ and $ Y. $
We first put $ X $ and $ Y $ on the left sides and the constants on the right sides of the equations.
$$ \begin{align} (s - 7)X + 13Y &= -2 \\ -2X + (s + 3)Y&= -4 \end{align} $$ | (*) |
We use partial fractions, just as we have for the past several sections to obtain the solution functions $$ \begin{align} x(t) &= -2\exp(2t)\cos(t) + 42\exp(2t)\sin(t) \\ y(t) &= -4\exp(2t)\cos(t) + 16\exp(2t)\sin(t) \\ \end{align} $$ You may reload this page to generate additional examples.
If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett