Mathematics Department

Math 340 Home, Textbook Contents, Online Homework Home

Warning: MathJax requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.

Laplace Transform Table

$f(t)={\mathcal L}^{-1}\{F(s)\}$     $F(s)={\mathcal L}\{f(t)\}$
 
$1$$\displaystyle\frac 1s$
$t^n$, $n$ a positive integer $\displaystyle\frac{n!}{s^{n+1}}$
$t^a$, $a>-1$ $\displaystyle\frac{\Gamma(a+1)}{s^{a+1}}$
$e^{at}$ $\displaystyle\frac{1}{s-a}$
$t^ne^{at}$, $n$ a positive integer $\displaystyle\frac{n!}{(s-a)^{n+1}}$
$\sin(at)$ $\displaystyle\frac{a}{s^2+a^2}$
$\cos(at)$ $\displaystyle\frac{s}{s^2+a^2}$
$t\sin(at)$ $\displaystyle\frac{2as}{(s^2+a^2)^2}$
$t\cos(at)$ $\displaystyle\frac{s^2-a^2}{(s^2+a^2)^2}$
$e^{at}\sin(bt)$ $\displaystyle\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$ $\displaystyle\frac{s-a}{(s-a)^2+b^2}$
$te^{at}\sin(bt)$ $\displaystyle\frac{2(s-a)b}{((s-a)^2+b^2)^2}$
$te^{at}\cos(bt)$ $\displaystyle\frac{(s-a)^2-b^2}{((s-a)^2+b^2)^2}$
$\delta(t-c)$ $e^{-cs}$
$u(t-c)f(t-c)$ $e^{-cs}{\mathcal L}\{f(t)\}$
$f'(t)$ $s{\mathcal L}\{f(t)\}-f(0)$
$f^{(n)}(t)$ $s^n{\mathcal L}\{f(t)\}-s^{n-1}f(0)-s^{n-2}f'(0) -\cdots-f^{(n-1)}(0)$
$\int_0^t f(T)\,dT$ $\displaystyle\frac{1}{s} {\mathcal L}\{f(t)\}$
$\int_0^t f(t-T)g(T)\,dT$ ${\mathcal L}\{f(t)\}{\mathcal L}\{g(t)\}$


If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett