Textbook Contents
Warning: MathJax
requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
Math 340 Written Homework Chapter 2 Solutions to Odd
Exercises
1.
$(\cos(n\theta)+i\sin(n\theta))=\exp(i(n\theta))=\exp((i\theta)n)
=\exp(i\theta)^n=(cos(\theta)+i\sin(\theta))^n$.
3.
$\displaystyle f_e(x)+f_o(x)=\frac{f(x)+f(-x)}2 + \frac{f(x)-f(-x)}2
= \frac{2f(x)}2=f(x)$
$\displaystyle f_e(-x)=\frac{f(-x)+f(x)}2=\frac{f(x)+f(-x)}2 =
f_e(x)$
$\displaystyle f_o(-x)=\frac{f(-x)-f(x)}2=-\frac{f(x)-f(-x)}2 = -f_o(x)$
5.
Remember that $\cos(-x)=\cos(x)$ and $\sin(-x)=-\sin(x)$.
$$ \begin{align}
\cosh(ix)&=\frac{\exp(ix)+\exp(-ix)}2 \\
&=\frac{(\cos(x)+i\sin(x))+(\cos(-x)+i\sin(-x)}2 \\
&=\frac{\cos(x)+i\sin(x)+\cos(x)-i\sin(x)}2 \\
&=\frac{2\cos(x)}2 = \cos(x)
\end{align} $$
$$ \begin{align}
\sinh(ix)&=\frac{\exp(ix)-\exp(-ix)}2 \\
&=\frac{(\cos(x)+i\sin(x))-(\cos(-x)+i\sin(-x)}2 \\
&=\frac{\cos(x)+i\sin(x)-\cos(x)+i\sin(x)}2 \\
&=\frac{2i\sin(x)}2 = i\sin(x)
\end{align} $$
7. $\ln(x+\sqrt{1+x^2}).$
9. $\sinh^{-1}(x)+C.$ If you use trig substitutions, you end up
integrating $\sec(u)$ to $\ln(\sec(u)+\tan(u))+C$ and after
back-substituting for $u$ you get the formula for $\sinh^{-1}(x)$ found
above in problem 7.
11. $12\exp(2x).$
13. $12x^5.$
15. Remember that the differntiation operator $D$ is linear by the basic
rules of differentiation from calculus 1.
We first check $L(y+z)=Ly+Lz$.
$$ \begin{align}
L(y+z)&=D^2(y+z)+3D(y+z)-4(y+z) \\
&=D^2y+D^2z+3Dy+3Dz-4y-4z \\
&=(D^2y+3Dy-4y) + (D^2z+3Dz-4z) \\
&=Ly+Lz
\end{align} $$
Second we check $L(cy)=cLy$.
$$ \begin{align}
L(cy)&=D^2(cy)+3D(cy)-4(cy) \\
&=c(D^2y)+c(3Dy)-c(4y) \\
&=c(D^2y+3Dy-4y) \\
&=c(Ly)
\end{align} $$
17. Almost any choice of $y$ and $z$ will show this is not linear. For
example, let $y=x$ and $z=1$. Then we compute
$$ \begin{align}
Ly&=x(Dx)=x \\
Lz&=1(D1)=0 \\
L(y+z)&=(x+1)D(x+1)=x+1
\end{align} $$
So $Ly+Lz=x+0\ne x+1=L(y+z).$
19. Computing the Wronskian we get
$W(\exp(x),\exp(2x))=2\exp(x)\exp(2x)-\exp(x)\exp(2x) = \exp(3x).$ Since
$W(0)=1\ne0$, the Wronskian is not identically 0 and hence the functions
are linearly independent.
21. Computing the Wronskian we get
$W(\exp(rx),x\exp(rx))=\exp(rx)((1+rx)\exp(rx))-rx\exp(rx)\exp(rx)
=\exp(2rx).$ Since $W(0)=1\ne0$, the Wronskian is not identically 0 and
hence the functions are linearly independent.
23.
b
a
c
25.
$y''+(x-1)y'-xy=0$
$y''+(x-1)y'+(1-x)y=0$
27.
$y''+(a(x)+b(x))y'+(a(x)b(x)+b'(x))y=0$
$y''+(a(x)+b(x))y'+(a(x)b(x)+a'(x))y=0$
29. $$ y=C_1\exp(-x)\int_0^x \exp(-t^2+t) dt + C_2\exp(-x)$$
31. $$y = \exp(-x^2)\int_0^x\exp(t^2+t)dt +
C_1\exp(-x^2)\int_0^x\exp(t^2-t)dt + C_2\exp(-x^2) $$
33. $y=C_1\exp(rx)+C_2x\exp(rx)$.
35. $y_p=A\exp(2x)+Bx^2+Cx+D$ where $A,$ $B,$ $C,$ and $D$ are
constants.
37. $y_p=Ax\sin(2x)+Bx\cos(2x)+Cx^2\exp(x)+Dx\exp(x)+E\exp(x)$ where $A,$
$B,$ $C,$ $D,$ and $E$ are constants.
39. $y=C_1\exp((1+3i)z + C_2\exp((1-3i)z)$
41. $\displaystyle y=C_1\exp(2iz)+C_2\exp(-2iz)+\frac{z}{4}.$
43. $y=(-5-i)\exp(-2z)+(7+2i)\exp(-z)$
45. $$ \begin{align}
y&=\exp(5iz) + \exp(-5iz) \\
&=\cos(5z)+i\sin(5z) + \cos(-5z) + i\sin(-5z) \\
&=\cos(5z)+i\sin(5z) + \cos(5z) - i\sin(5z) \\
&=2\cos(5z)
\end{align} $$
47. $v(x)w''+(2v'(x)+p(x)v(x))w' = 0$
49. $\displaystyle \frac{\sqrt{799}}{40}\approx 0.71$ radians/sec
51. $\displaystyle \frac{2\pi}{\sqrt{799}/40} \approx 8.89$ sec
53. $\displaystyle \frac{20\pi}{3} \approx 20.9$ sec
55. $c \approx 346.1$ g/sec
57.
1/sec sec
59. Any value from 2 seconds to infinity
61. Approximately 1.73 seconds
63. $c \approx 77.0$ g/sec
65. Approximately 0.99 seconds
67. From the previous problem we know successive maxima occur at intervals
of $2\pi/\omega$ where the position function is
$$x(t)=A\exp\left(-\frac{ct}{2m}\right)\cos(\omega t+\phi)$$
for some constants $A$ and $\phi$ (and $
\omega=\sqrt{\frac{k}{m}-\left(\frac{c}{2m}\right)^2},$ but all that
matters in what follows is that the $\omega$ in the interval between
successive maxima is the same as the omega in the position function). Now
$$ \begin{align}
x(t+2\pi/\omega)&=A\exp\left(-\frac{c(t+2\pi/\omega)}{2m}\right)
\cos(\omega(t+2\pi/\omega)+\phi) \\
&=A\exp\left(-\frac{ct}{2m}\right)\exp\left(-\frac{c\pi}{m}\right)
\cos(\omega t + 2\pi + \phi) \\
&=A\exp\left(-\frac{ct}{2m}\right)\exp\left(-\frac{c\pi}{m}\right)
\cos(\omega t + \phi)
\end{align} $$
Then the ratio of the amplitudes of successive maxima is
$$ \begin{align}
\frac{x(t+2\pi/\omega)}{x(t)}&=
\frac{=A\exp\left(-\frac{ct}{2m}\right)\exp\left(-\frac{c\pi}{m}\right)
\cos(\omega t + \phi)}
{=A\exp\left(-\frac{ct}{2m}\right)\cos(\omega t + \phi)} \\
&= \exp\left(-\frac{c\pi}{m}\right)
\end{align} $$
which is a constant (depending on $c$ and $m$ but not $t$).
69. $4\pi/35 \approx 0.36$ seconds
71. $8\pi^2 kg/sec^2$
73. Approximately $1.39\times10^{-12}$ farads.
75. Coming soon
77. $x(t) = \displaystyle 2B\sin\left(\frac{\omega+\omega_0}{2}t\right)
\sin\left(\frac{\omega-\omega_0}{2}t\right)$
79. $y(x)=x\sin(x)+\cos(x)\ln|\cos(x)| + C_1\cos(x)+C_2\sin(x)$
81. $y(x)=2x^2-3x+2x^{-1}$
83. $\displaystyle y(x) = \frac{\exp(-x)-\exp(-3x)}{\exp(-1)-\exp(-3)}$
85. $\displaystyle y(x) = -\frac{1}{13}\exp(-x)\cos(x) - \frac{\exp(-1)\cos(1)+e}{13\exp(-1)\sin(1)}\exp(-x)\sin(x)$
87. $y(x)=-\sin(x)$
89. $y(x)=\cos(2x)+B\sin(2x)$ where $B$ is an arbitrary constant
91. $y(x)=B\exp(-x)\sin(2x)$ where $B$ is an arbitrary constant
93. $n = r/2$ where $r$ is any integer
95. $n = r\pi$ where $r$ is any integer
If you have any problems with this page, please contact
bennett@ksu.edu.
©1994-2025 Andrew G. Bennett