7. $\ln(x+\sqrt{1+x^2}).$
9. $\sinh^{-1}(x)+C.$ If you use trig substitutions, you end up
integrating $\sec(u)$ to $\ln(\sec(u)+\tan(u))+C$ and after
back-substituting for $u$ you get the formula for $\sinh^{-1}(x)$ found
above in problem 7.
11. $12\exp(2x).$
13. $12x^5.$
15. Remember that the differntiation operator $D$ is linear by the basic
rules of differentiation from calculus 1.
We first check $L(y+z)=Ly+Lz$.
$$ \begin{align}
L(y+z)&=D^2(y+z)+3D(y+z)-4(y+z) \\
&=D^2y+D^2z+3Dy+3Dz-4y-4z \\
&=(D^2y+3Dy-4y) + (D^2z+3Dz-4z) \\
&=Ly+Lz
\end{align} $$
Second we check $L(cy)=cLy$.
$$ \begin{align}
L(cy)&=D^2(cy)+3D(cy)-4(cy) \\
&=c(D^2y)+c(3Dy)-c(4y) \\
&=c(D^2y+3Dy-4y) \\
&=c(Ly)
\end{align} $$
17. Almost any choice of $y$ and $z$ will show this is not linear. For
example, let $y=x$ and $z=1$. Then we compute
$$ \begin{align}
Ly&=x(Dx)=x \\
Lz&=1(D1)=0 \\
L(y+z)&=(x+1)D(x+1)=x+1
\end{align} $$
So $Ly+Lz=x+0\ne x+1=L(y+z).$
19. Computing the Wronskian we get
$W(\exp(x),\exp(2x))=2\exp(x)\exp(2x)-\exp(x)\exp(2x) = \exp(3x).$ Since
$W(0)=1\ne0$, the Wronskian is not identically 0 and hence the functions
are linearly independent.
21. Computing the Wronskian we get
$W(\exp(rx),x\exp(rx))=\exp(rx)((1+rx)\exp(rx))-rx\exp(rx)\exp(rx)
=\exp(2rx).$ Since $W(0)=1\ne0$, the Wronskian is not identically 0 and
hence the functions are linearly independent.
23.