Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (30xy + 20x - 5y + 3) dx + (15x^2 - 5x + 10y - 9) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(30xy + 20x - 5y + 3\right) = 30x - 5 = \frac{\partial}{\partial x}\left(15x^2 - 5x + 10y - 9\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 30xy + 20x - 5y + 3\\ \frac{\partial F}{\partial y} &= 15x^2 - 5x + 10y - 9 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (30xy + 20x - 5y + 3)\,\partial x = 15x^2y + 10x^2 - 5xy + 3x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (15x^2 - 5x + 10y - 9)\,\partial y = 15x^2y - 5xy + 5y^2 - 9y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 5y^2 - 9y$ and $ \tilde{C}(x) = 10x^2 + 3x. $ So $$ F(x,y) = 15x^2y - 5xy + 10x^2 + 5y^2 + 3x - 9y. $$
- The solution is $F(x,y) = K.$ $$ 15x^2y - 5xy + 10x^2 + 5y^2 + 3x - 9y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett