Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-20xy - 8x + 10y + 9) dx + (-10x^2 + 10x + 4y + 27) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-20xy - 8x + 10y + 9\right) = -20x + 10 = \frac{\partial}{\partial x}\left(-10x^2 + 10x + 4y + 27\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -20xy - 8x + 10y + 9\\ \frac{\partial F}{\partial y} &= -10x^2 + 10x + 4y + 27 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-20xy - 8x + 10y + 9)\,\partial x = -10x^2y - 4x^2 + 10xy + 9x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-10x^2 + 10x + 4y + 27)\,\partial y = -10x^2y + 10xy + 2y^2 + 27y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 2y^2 + 27y$ and $ \tilde{C}(x) = -4x^2 + 9x. $ So $$ F(x,y) = -10x^2y + 10xy - 4x^2 + 2y^2 + 9x + 27y. $$
- The solution is $F(x,y) = K.$ $$ -10x^2y + 10xy - 4x^2 + 2y^2 + 9x + 27y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett