Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-16xy - 32x - 4y - 7) dx + (-8x^2 - 4x - 4y - 8) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-16xy - 32x - 4y - 7\right) = -16x - 4 = \frac{\partial}{\partial x}\left(-8x^2 - 4x - 4y - 8\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -16xy - 32x - 4y - 7\\ \frac{\partial F}{\partial y} &= -8x^2 - 4x - 4y - 8 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-16xy - 32x - 4y - 7)\,\partial x = -8x^2y - 16x^2 - 4xy - 7x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-8x^2 - 4x - 4y - 8)\,\partial y = -8x^2y - 4xy - 2y^2 - 8y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -2y^2 - 8y$ and $ \tilde{C}(x) = -16x^2 - 7x. $ So $$ F(x,y) = -8x^2y - 4xy - 16x^2 - 2y^2 - 7x - 8y. $$
- The solution is $F(x,y) = K.$ $$ -8x^2y - 4xy - 16x^2 - 2y^2 - 7x - 8y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett