Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (24xy + 4x + 12y + 8) dx + (12x^2 + 12x + 6y + 17) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(24xy + 4x + 12y + 8\right) = 24x + 12 = \frac{\partial}{\partial x}\left(12x^2 + 12x + 6y + 17\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 24xy + 4x + 12y + 8\\ \frac{\partial F}{\partial y} &= 12x^2 + 12x + 6y + 17 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (24xy + 4x + 12y + 8)\,\partial x = 12x^2y + 2x^2 + 12xy + 8x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (12x^2 + 12x + 6y + 17)\,\partial y = 12x^2y + 12xy + 3y^2 + 17y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 3y^2 + 17y$ and $ \tilde{C}(x) = 2x^2 + 8x. $ So $$ F(x,y) = 12x^2y + 12xy + 2x^2 + 3y^2 + 8x + 17y. $$
- The solution is $F(x,y) = K.$ $$ 12x^2y + 12xy + 2x^2 + 3y^2 + 8x + 17y = K $$
If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett