Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (8y^2 - 6y + 2x - 4) dx + (16xy - 6x - 40y + 14) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(8y^2 - 6y + 2x - 4\right) = 16y - 6 = \frac{\partial}{\partial x}\left(16xy - 6x - 40y + 14\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 8y^2 - 6y + 2x - 4\\ \frac{\partial F}{\partial y} &= 16xy - 6x - 40y + 14 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (8y^2 - 6y + 2x - 4)\,\partial x = 8xy^2 - 6xy + x^2 - 4x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (16xy - 6x - 40y + 14)\,\partial y = 8xy^2 - 6xy - 20y^2 + 14y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -20y^2 + 14y$ and $ \tilde{C}(x) = x^2 - 4x. $ So $$ F(x,y) = 8xy^2 - 6xy + x^2 - 20y^2 - 4x + 14y. $$
- The solution is $F(x,y) = K.$ $$ 8xy^2 - 6xy + x^2 - 20y^2 - 4x + 14y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett