Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-4y^2 - 16y - 4x + 15) dx + (-3y^2 - 8xy - 8y - 16x - 9) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-4y^2 - 16y - 4x + 15\right) = -8y - 16 = \frac{\partial}{\partial x}\left(-3y^2 - 8xy - 8y - 16x - 9\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -4y^2 - 16y - 4x + 15\\ \frac{\partial F}{\partial y} &= -3y^2 - 8xy - 8y - 16x - 9 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-4y^2 - 16y - 4x + 15)\,\partial x = -4xy^2 - 16xy - 2x^2 + 15x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-3y^2 - 8xy - 8y - 16x - 9)\,\partial y = -y^3 - 4xy^2 - 4y^2 - 16xy - 9y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -y^3 - 4y^2 - 9y$ and $ \tilde{C}(x) = -2x^2 + 15x. $ So $$ F(x,y) = -y^3 - 4xy^2 - 16xy - 2x^2 - 4y^2 + 15x - 9y. $$
- The solution is $F(x,y) = K.$ $$ -y^3 - 4xy^2 - 16xy - 2x^2 - 4y^2 + 15x - 9y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett