Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (y^2 - 2y + 4x + 7) dx + (2xy - 2x - 2y + 9) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(y^2 - 2y + 4x + 7\right) = 2y - 2 = \frac{\partial}{\partial x}\left(2xy - 2x - 2y + 9\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= y^2 - 2y + 4x + 7\\ \frac{\partial F}{\partial y} &= 2xy - 2x - 2y + 9 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (y^2 - 2y + 4x + 7)\,\partial x = xy^2 - 2xy + 2x^2 + 7x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (2xy - 2x - 2y + 9)\,\partial y = xy^2 - 2xy - y^2 + 9y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -y^2 + 9y$ and $ \tilde{C}(x) = 2x^2 + 7x. $ So $$ F(x,y) = xy^2 - 2xy + 2x^2 - y^2 + 7x + 9y. $$
- The solution is $F(x,y) = K.$ $$ xy^2 - 2xy + 2x^2 - y^2 + 7x + 9y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett