Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-4xy + 2x - 6y - 1) dx + (-15y^2 - 2x^2 + 4y - 6x) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-4xy + 2x - 6y - 1\right) = -4x - 6 = \frac{\partial}{\partial x}\left(-15y^2 - 2x^2 + 4y - 6x\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -4xy + 2x - 6y - 1\\ \frac{\partial F}{\partial y} &= -15y^2 - 2x^2 + 4y - 6x \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-4xy + 2x - 6y - 1)\,\partial x = -2x^2y + x^2 - 6xy - x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-15y^2 - 2x^2 + 4y - 6x)\,\partial y = -5y^3 - 2x^2y + 2y^2 - 6xy + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -5y^3 + 2y^2$ and $ \tilde{C}(x) = x^2 - x. $ So $$ F(x,y) = -2x^2y - 5y^3 - 6xy + x^2 + 2y^2 - x. $$
- The solution is $F(x,y) = K.$ $$ -2x^2y - 5y^3 - 6xy + x^2 + 2y^2 - x = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett