Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (6x - 4y - 8) dx + (-4x - 13) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(6x - 4y - 8\right) = -4 = \frac{\partial}{\partial x}\left(-4x - 13\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 6x - 4y - 8\\ \frac{\partial F}{\partial y} &= -4x - 13 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (6x - 4y - 8)\,\partial x = 3x^2 - 4xy - 8x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-4x - 13)\,\partial y = -4xy - 13y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -13y$ and $ \tilde{C}(x) = 3x^2 - 8x. $ So $$ F(x,y) = 3x^2 - 4xy - 8x - 13y. $$
- The solution is $F(x,y) = K.$ $$ 3x^2 - 4xy - 8x - 13y = K $$
If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett