Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (16y^2 + 4y + 8x - 8) dx + (6y^2 + 32xy - 18y + 4x - 6) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(16y^2 + 4y + 8x - 8\right) = 32y + 4 = \frac{\partial}{\partial x}\left(6y^2 + 32xy - 18y + 4x - 6\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 16y^2 + 4y + 8x - 8\\ \frac{\partial F}{\partial y} &= 6y^2 + 32xy - 18y + 4x - 6 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (16y^2 + 4y + 8x - 8)\,\partial x = 16xy^2 + 4xy + 4x^2 - 8x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (6y^2 + 32xy - 18y + 4x - 6)\,\partial y = 2y^3 + 16xy^2 - 9y^2 + 4xy - 6y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 2y^3 - 9y^2 - 6y$ and $ \tilde{C}(x) = 4x^2 - 8x. $ So $$ F(x,y) = 2y^3 + 16xy^2 + 4xy + 4x^2 - 9y^2 - 8x - 6y. $$
- The solution is $F(x,y) = K.$ $$ 2y^3 + 16xy^2 + 4xy + 4x^2 - 9y^2 - 8x - 6y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett