Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (2y^2 - 2y - 4x) dx + (-15y^2 + 4xy - 2x) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(2y^2 - 2y - 4x\right) = 4y - 2 = \frac{\partial}{\partial x}\left(-15y^2 + 4xy - 2x\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 2y^2 - 2y - 4x\\ \frac{\partial F}{\partial y} &= -15y^2 + 4xy - 2x \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (2y^2 - 2y - 4x)\,\partial x = 2xy^2 - 2xy - 2x^2 + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-15y^2 + 4xy - 2x)\,\partial y = -5y^3 + 2xy^2 - 2xy + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -5y^3$ and $ \tilde{C}(x) = -2x^2. $ So $$ F(x,y) = 2xy^2 - 5y^3 - 2xy - 2x^2. $$
- The solution is $F(x,y) = K.$ $$ 2xy^2 - 5y^3 - 2xy - 2x^2 = K $$
If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett