Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-40xy + 22x + 15y - 9) dx + (-20x^2 + 15x - 10y + 10) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-40xy + 22x + 15y - 9\right) = -40x + 15 = \frac{\partial}{\partial x}\left(-20x^2 + 15x - 10y + 10\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -40xy + 22x + 15y - 9\\ \frac{\partial F}{\partial y} &= -20x^2 + 15x - 10y + 10 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-40xy + 22x + 15y - 9)\,\partial x = -20x^2y + 11x^2 + 15xy - 9x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-20x^2 + 15x - 10y + 10)\,\partial y = -20x^2y + 15xy - 5y^2 + 10y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -5y^2 + 10y$ and $ \tilde{C}(x) = 11x^2 - 9x. $ So $$ F(x,y) = -20x^2y + 15xy + 11x^2 - 5y^2 - 9x + 10y. $$
- The solution is $F(x,y) = K.$ $$ -20x^2y + 15xy + 11x^2 - 5y^2 - 9x + 10y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett