Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-2x + 12y + 14) dx + (3y^2 - 8y + 12x + 11) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-2x + 12y + 14\right) = 12 = \frac{\partial}{\partial x}\left(3y^2 - 8y + 12x + 11\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -2x + 12y + 14\\ \frac{\partial F}{\partial y} &= 3y^2 - 8y + 12x + 11 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-2x + 12y + 14)\,\partial x = -x^2 + 12xy + 14x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (3y^2 - 8y + 12x + 11)\,\partial y = y^3 - 4y^2 + 12xy + 11y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = y^3 - 4y^2 + 11y$ and $ \tilde{C}(x) = -x^2 + 14x. $ So $$ F(x,y) = y^3 + 12xy - x^2 - 4y^2 + 14x + 11y. $$
- The solution is $F(x,y) = K.$ $$ y^3 + 12xy - x^2 - 4y^2 + 14x + 11y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett