Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (2xy + 6x - 3y - 8) dx + (-6y^2 + x^2 - 8y - 3x + 6) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(2xy + 6x - 3y - 8\right) = 2x - 3 = \frac{\partial}{\partial x}\left(-6y^2 + x^2 - 8y - 3x + 6\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 2xy + 6x - 3y - 8\\ \frac{\partial F}{\partial y} &= -6y^2 + x^2 - 8y - 3x + 6 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (2xy + 6x - 3y - 8)\,\partial x = x^2y + 3x^2 - 3xy - 8x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-6y^2 + x^2 - 8y - 3x + 6)\,\partial y = -2y^3 + x^2y - 4y^2 - 3xy + 6y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -2y^3 - 4y^2 + 6y$ and $ \tilde{C}(x) = 3x^2 - 8x. $ So $$ F(x,y) = -2y^3 + x^2y - 3xy + 3x^2 - 4y^2 - 8x + 6y. $$
- The solution is $F(x,y) = K.$ $$ -2y^3 + x^2y - 3xy + 3x^2 - 4y^2 - 8x + 6y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett