Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (20xy - 6x + 10y - 7) dx + (10x^2 + 10x - 7) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(20xy - 6x + 10y - 7\right) = 20x + 10 = \frac{\partial}{\partial x}\left(10x^2 + 10x - 7\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 20xy - 6x + 10y - 7\\ \frac{\partial F}{\partial y} &= 10x^2 + 10x - 7 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (20xy - 6x + 10y - 7)\,\partial x = 10x^2y - 3x^2 + 10xy - 7x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (10x^2 + 10x - 7)\,\partial y = 10x^2y + 10xy - 7y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -7y$ and $ \tilde{C}(x) = -3x^2 - 7x. $ So $$ F(x,y) = 10x^2y - 3x^2 + 10xy - 7x - 7y. $$
- The solution is $F(x,y) = K.$ $$ 10x^2y - 3x^2 + 10xy - 7x - 7y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett