Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-2xy - 18x - y - 9) dx + (-9y^2 - x^2 - 6y - x + 1) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-2xy - 18x - y - 9\right) = -2x - 1 = \frac{\partial}{\partial x}\left(-9y^2 - x^2 - 6y - x + 1\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -2xy - 18x - y - 9\\ \frac{\partial F}{\partial y} &= -9y^2 - x^2 - 6y - x + 1 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-2xy - 18x - y - 9)\,\partial x = -x^2y - 9x^2 - xy - 9x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-9y^2 - x^2 - 6y - x + 1)\,\partial y = -3y^3 - x^2y - 3y^2 - xy + y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -3y^3 - 3y^2 + y$ and $ \tilde{C}(x) = -9x^2 - 9x. $ So $$ F(x,y) = -3y^3 - x^2y - xy - 9x^2 - 3y^2 - 9x + y. $$
- The solution is $F(x,y) = K.$ $$ -3y^3 - x^2y - xy - 9x^2 - 3y^2 - 9x + y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett