Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (9y^2 - 15y + 6x - 4) dx + (-12y^2 + 18xy + 24y - 15x - 17) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(9y^2 - 15y + 6x - 4\right) = 18y - 15 = \frac{\partial}{\partial x}\left(-12y^2 + 18xy + 24y - 15x - 17\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 9y^2 - 15y + 6x - 4\\ \frac{\partial F}{\partial y} &= -12y^2 + 18xy + 24y - 15x - 17 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (9y^2 - 15y + 6x - 4)\,\partial x = 9xy^2 - 15xy + 3x^2 - 4x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-12y^2 + 18xy + 24y - 15x - 17)\,\partial y = -4y^3 + 9xy^2 + 12y^2 - 15xy - 17y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -4y^3 + 12y^2 - 17y$ and $ \tilde{C}(x) = 3x^2 - 4x. $ So $$ F(x,y) = -4y^3 + 9xy^2 - 15xy + 3x^2 + 12y^2 - 4x - 17y. $$
- The solution is $F(x,y) = K.$ $$ -4y^3 + 9xy^2 - 15xy + 3x^2 + 12y^2 - 4x - 17y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett