Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (30xy + 22x - 20y - 4) dx + (15x^2 - 20x + 8y + 10) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(30xy + 22x - 20y - 4\right) = 30x - 20 = \frac{\partial}{\partial x}\left(15x^2 - 20x + 8y + 10\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 30xy + 22x - 20y - 4\\ \frac{\partial F}{\partial y} &= 15x^2 - 20x + 8y + 10 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (30xy + 22x - 20y - 4)\,\partial x = 15x^2y + 11x^2 - 20xy - 4x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (15x^2 - 20x + 8y + 10)\,\partial y = 15x^2y - 20xy + 4y^2 + 10y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 4y^2 + 10y$ and $ \tilde{C}(x) = 11x^2 - 4x. $ So $$ F(x,y) = 15x^2y - 20xy + 11x^2 + 4y^2 - 4x + 10y. $$
- The solution is $F(x,y) = K.$ $$ 15x^2y - 20xy + 11x^2 + 4y^2 - 4x + 10y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett