Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (5y^2 - 15y + 10x - 21) dx + (10xy - 15x - 8) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(5y^2 - 15y + 10x - 21\right) = 10y - 15 = \frac{\partial}{\partial x}\left(10xy - 15x - 8\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 5y^2 - 15y + 10x - 21\\ \frac{\partial F}{\partial y} &= 10xy - 15x - 8 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (5y^2 - 15y + 10x - 21)\,\partial x = 5xy^2 - 15xy + 5x^2 - 21x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (10xy - 15x - 8)\,\partial y = 5xy^2 - 15xy - 8y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -8y$ and $ \tilde{C}(x) = 5x^2 - 21x. $ So $$ F(x,y) = 5xy^2 - 15xy + 5x^2 - 21x - 8y. $$
- The solution is $F(x,y) = K.$ $$ 5xy^2 - 15xy + 5x^2 - 21x - 8y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett