Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-12xy - 20x - 3y - 3) dx + (-6x^2 - 3x - 8y + 14) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-12xy - 20x - 3y - 3\right) = -12x - 3 = \frac{\partial}{\partial x}\left(-6x^2 - 3x - 8y + 14\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -12xy - 20x - 3y - 3\\ \frac{\partial F}{\partial y} &= -6x^2 - 3x - 8y + 14 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-12xy - 20x - 3y - 3)\,\partial x = -6x^2y - 10x^2 - 3xy - 3x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-6x^2 - 3x - 8y + 14)\,\partial y = -6x^2y - 3xy - 4y^2 + 14y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -4y^2 + 14y$ and $ \tilde{C}(x) = -10x^2 - 3x. $ So $$ F(x,y) = -6x^2y - 3xy - 10x^2 - 4y^2 - 3x + 14y. $$
- The solution is $F(x,y) = K.$ $$ -6x^2y - 3xy - 10x^2 - 4y^2 - 3x + 14y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett