Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-4xy + 16x - 2y + 8) dx + (-2x^2 - 2x + 1) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-4xy + 16x - 2y + 8\right) = -4x - 2 = \frac{\partial}{\partial x}\left(-2x^2 - 2x + 1\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -4xy + 16x - 2y + 8\\ \frac{\partial F}{\partial y} &= -2x^2 - 2x + 1 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-4xy + 16x - 2y + 8)\,\partial x = -2x^2y + 8x^2 - 2xy + 8x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-2x^2 - 2x + 1)\,\partial y = -2x^2y - 2xy + y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = y$ and $ \tilde{C}(x) = 8x^2 + 8x. $ So $$ F(x,y) = -2x^2y + 8x^2 - 2xy + 8x + y. $$
- The solution is $F(x,y) = K.$ $$ -2x^2y + 8x^2 - 2xy + 8x + y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett