Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-10xy - 4x + 20y + 7) dx + (-5x^2 + 6y + 20x) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-10xy - 4x + 20y + 7\right) = -10x + 20 = \frac{\partial}{\partial x}\left(-5x^2 + 6y + 20x\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -10xy - 4x + 20y + 7\\ \frac{\partial F}{\partial y} &= -5x^2 + 6y + 20x \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-10xy - 4x + 20y + 7)\,\partial x = -5x^2y - 2x^2 + 20xy + 7x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-5x^2 + 6y + 20x)\,\partial y = -5x^2y + 3y^2 + 20xy + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 3y^2$ and $ \tilde{C}(x) = -2x^2 + 7x. $ So $$ F(x,y) = -5x^2y - 2x^2 + 20xy + 3y^2 + 7x. $$
- The solution is $F(x,y) = K.$ $$ -5x^2y - 2x^2 + 20xy + 3y^2 + 7x = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett