Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (8x - 16y - 22) dx + (-16x - 4) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(8x - 16y - 22\right) = -16 = \frac{\partial}{\partial x}\left(-16x - 4\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 8x - 16y - 22\\ \frac{\partial F}{\partial y} &= -16x - 4 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (8x - 16y - 22)\,\partial x = 4x^2 - 16xy - 22x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-16x - 4)\,\partial y = -16xy - 4y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -4y$ and $ \tilde{C}(x) = 4x^2 - 22x. $ So $$ F(x,y) = 4x^2 - 16xy - 22x - 4y. $$
- The solution is $F(x,y) = K.$ $$ 4x^2 - 16xy - 22x - 4y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett