Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (10xy - 25y + 11) dx + (-12y^2 + 5x^2 + 10y - 25x + 7) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(10xy - 25y + 11\right) = 10x - 25 = \frac{\partial}{\partial x}\left(-12y^2 + 5x^2 + 10y - 25x + 7\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 10xy - 25y + 11\\ \frac{\partial F}{\partial y} &= -12y^2 + 5x^2 + 10y - 25x + 7 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (10xy - 25y + 11)\,\partial x = 5x^2y - 25xy + 11x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-12y^2 + 5x^2 + 10y - 25x + 7)\,\partial y = -4y^3 + 5x^2y + 5y^2 - 25xy + 7y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -4y^3 + 5y^2 + 7y$ and $ \tilde{C}(x) = 11x. $ So $$ F(x,y) = 5x^2y - 4y^3 - 25xy + 5y^2 + 11x + 7y. $$
- The solution is $F(x,y) = K.$ $$ 5x^2y - 4y^3 - 25xy + 5y^2 + 11x + 7y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett