Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (40xy - 30x - 8y + 8) dx + (20x^2 - 8x + 2y - 13) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(40xy - 30x - 8y + 8\right) = 40x - 8 = \frac{\partial}{\partial x}\left(20x^2 - 8x + 2y - 13\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 40xy - 30x - 8y + 8\\ \frac{\partial F}{\partial y} &= 20x^2 - 8x + 2y - 13 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (40xy - 30x - 8y + 8)\,\partial x = 20x^2y - 15x^2 - 8xy + 8x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (20x^2 - 8x + 2y - 13)\,\partial y = 20x^2y - 8xy + y^2 - 13y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = y^2 - 13y$ and $ \tilde{C}(x) = -15x^2 + 8x. $ So $$ F(x,y) = 20x^2y - 8xy - 15x^2 + y^2 + 8x - 13y. $$
- The solution is $F(x,y) = K.$ $$ 20x^2y - 8xy - 15x^2 + y^2 + 8x - 13y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett