Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-8y^2 - 20y + 2x - 25) dx + (-16xy - 20x + 26y + 26) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-8y^2 - 20y + 2x - 25\right) = -16y - 20 = \frac{\partial}{\partial x}\left(-16xy - 20x + 26y + 26\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -8y^2 - 20y + 2x - 25\\ \frac{\partial F}{\partial y} &= -16xy - 20x + 26y + 26 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-8y^2 - 20y + 2x - 25)\,\partial x = -8xy^2 - 20xy + x^2 - 25x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-16xy - 20x + 26y + 26)\,\partial y = -8xy^2 - 20xy + 13y^2 + 26y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 13y^2 + 26y$ and $ \tilde{C}(x) = x^2 - 25x. $ So $$ F(x,y) = -8xy^2 - 20xy + x^2 + 13y^2 - 25x + 26y. $$
- The solution is $F(x,y) = K.$ $$ -8xy^2 - 20xy + x^2 + 13y^2 - 25x + 26y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett