Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-8y^2 + 20y - 2x - 16) dx + (-16xy + 20x - 24y + 22) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-8y^2 + 20y - 2x - 16\right) = -16y + 20 = \frac{\partial}{\partial x}\left(-16xy + 20x - 24y + 22\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -8y^2 + 20y - 2x - 16\\ \frac{\partial F}{\partial y} &= -16xy + 20x - 24y + 22 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-8y^2 + 20y - 2x - 16)\,\partial x = -8xy^2 + 20xy - x^2 - 16x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-16xy + 20x - 24y + 22)\,\partial y = -8xy^2 + 20xy - 12y^2 + 22y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -12y^2 + 22y$ and $ \tilde{C}(x) = -x^2 - 16x. $ So $$ F(x,y) = -8xy^2 + 20xy - x^2 - 12y^2 - 16x + 22y. $$
- The solution is $F(x,y) = K.$ $$ -8xy^2 + 20xy - x^2 - 12y^2 - 16x + 22y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett