Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-2xy + 6x + 4y - 12) dx + (-6y^2 - x^2 - 10y + 4x + 10) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-2xy + 6x + 4y - 12\right) = -2x + 4 = \frac{\partial}{\partial x}\left(-6y^2 - x^2 - 10y + 4x + 10\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -2xy + 6x + 4y - 12\\ \frac{\partial F}{\partial y} &= -6y^2 - x^2 - 10y + 4x + 10 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-2xy + 6x + 4y - 12)\,\partial x = -x^2y + 3x^2 + 4xy - 12x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-6y^2 - x^2 - 10y + 4x + 10)\,\partial y = -2y^3 - x^2y - 5y^2 + 4xy + 10y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -2y^3 - 5y^2 + 10y$ and $ \tilde{C}(x) = 3x^2 - 12x. $ So $$ F(x,y) = -2y^3 - x^2y + 4xy + 3x^2 - 5y^2 - 12x + 10y. $$
- The solution is $F(x,y) = K.$ $$ -2y^3 - x^2y + 4xy + 3x^2 - 5y^2 - 12x + 10y = K $$
If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett