Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (15y^2 - 6y + 13) dx + (30xy - 6x + 42y - 4) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(15y^2 - 6y + 13\right) = 30y - 6 = \frac{\partial}{\partial x}\left(30xy - 6x + 42y - 4\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 15y^2 - 6y + 13\\ \frac{\partial F}{\partial y} &= 30xy - 6x + 42y - 4 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (15y^2 - 6y + 13)\,\partial x = 15xy^2 - 6xy + 13x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (30xy - 6x + 42y - 4)\,\partial y = 15xy^2 - 6xy + 21y^2 - 4y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 21y^2 - 4y$ and $ \tilde{C}(x) = 13x. $ So $$ F(x,y) = 15xy^2 - 6xy + 21y^2 + 13x - 4y. $$
- The solution is $F(x,y) = K.$ $$ 15xy^2 - 6xy + 21y^2 + 13x - 4y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett