Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (3y^2 - 2y - 6x - 5) dx + (6xy - 2x - 26y + 12) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(3y^2 - 2y - 6x - 5\right) = 6y - 2 = \frac{\partial}{\partial x}\left(6xy - 2x - 26y + 12\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 3y^2 - 2y - 6x - 5\\ \frac{\partial F}{\partial y} &= 6xy - 2x - 26y + 12 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (3y^2 - 2y - 6x - 5)\,\partial x = 3xy^2 - 2xy - 3x^2 - 5x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (6xy - 2x - 26y + 12)\,\partial y = 3xy^2 - 2xy - 13y^2 + 12y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -13y^2 + 12y$ and $ \tilde{C}(x) = -3x^2 - 5x. $ So $$ F(x,y) = 3xy^2 - 2xy - 3x^2 - 13y^2 - 5x + 12y. $$
- The solution is $F(x,y) = K.$ $$ 3xy^2 - 2xy - 3x^2 - 13y^2 - 5x + 12y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett