Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (2y^2 - 10y + 6x + 4) dx + (4xy - 10x + 4y - 5) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(2y^2 - 10y + 6x + 4\right) = 4y - 10 = \frac{\partial}{\partial x}\left(4xy - 10x + 4y - 5\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 2y^2 - 10y + 6x + 4\\ \frac{\partial F}{\partial y} &= 4xy - 10x + 4y - 5 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (2y^2 - 10y + 6x + 4)\,\partial x = 2xy^2 - 10xy + 3x^2 + 4x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (4xy - 10x + 4y - 5)\,\partial y = 2xy^2 - 10xy + 2y^2 - 5y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 2y^2 - 5y$ and $ \tilde{C}(x) = 3x^2 + 4x. $ So $$ F(x,y) = 2xy^2 - 10xy + 3x^2 + 2y^2 + 4x - 5y. $$
- The solution is $F(x,y) = K.$ $$ 2xy^2 - 10xy + 3x^2 + 2y^2 + 4x - 5y = K $$
If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett