Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (8xy - 10x - 20y + 8) dx + (4x^2 - 20x + 4y + 6) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(8xy - 10x - 20y + 8\right) = 8x - 20 = \frac{\partial}{\partial x}\left(4x^2 - 20x + 4y + 6\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 8xy - 10x - 20y + 8\\ \frac{\partial F}{\partial y} &= 4x^2 - 20x + 4y + 6 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (8xy - 10x - 20y + 8)\,\partial x = 4x^2y - 5x^2 - 20xy + 8x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (4x^2 - 20x + 4y + 6)\,\partial y = 4x^2y - 20xy + 2y^2 + 6y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 2y^2 + 6y$ and $ \tilde{C}(x) = -5x^2 + 8x. $ So $$ F(x,y) = 4x^2y - 20xy - 5x^2 + 2y^2 + 8x + 6y. $$
- The solution is $F(x,y) = K.$ $$ 4x^2y - 20xy - 5x^2 + 2y^2 + 8x + 6y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett