Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-8xy + 14x - 8y + 7) dx + (-4x^2 - 8x - 10y - 21) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-8xy + 14x - 8y + 7\right) = -8x - 8 = \frac{\partial}{\partial x}\left(-4x^2 - 8x - 10y - 21\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -8xy + 14x - 8y + 7\\ \frac{\partial F}{\partial y} &= -4x^2 - 8x - 10y - 21 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-8xy + 14x - 8y + 7)\,\partial x = -4x^2y + 7x^2 - 8xy + 7x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-4x^2 - 8x - 10y - 21)\,\partial y = -4x^2y - 8xy - 5y^2 - 21y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -5y^2 - 21y$ and $ \tilde{C}(x) = 7x^2 + 7x. $ So $$ F(x,y) = -4x^2y - 8xy + 7x^2 - 5y^2 + 7x - 21y. $$
- The solution is $F(x,y) = K.$ $$ -4x^2y - 8xy + 7x^2 - 5y^2 + 7x - 21y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett