Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (2y^2 - 10y + 2x - 9) dx + (-9y^2 + 4xy - 10x + 10) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(2y^2 - 10y + 2x - 9\right) = 4y - 10 = \frac{\partial}{\partial x}\left(-9y^2 + 4xy - 10x + 10\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 2y^2 - 10y + 2x - 9\\ \frac{\partial F}{\partial y} &= -9y^2 + 4xy - 10x + 10 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (2y^2 - 10y + 2x - 9)\,\partial x = 2xy^2 - 10xy + x^2 - 9x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-9y^2 + 4xy - 10x + 10)\,\partial y = -3y^3 + 2xy^2 - 10xy + 10y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -3y^3 + 10y$ and $ \tilde{C}(x) = x^2 - 9x. $ So $$ F(x,y) = 2xy^2 - 3y^3 - 10xy + x^2 - 9x + 10y. $$
- The solution is $F(x,y) = K.$ $$ 2xy^2 - 3y^3 - 10xy + x^2 - 9x + 10y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett