Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-16y^2 - 12y + 2x + 6) dx + (-32xy - 12x + 16y + 8) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-16y^2 - 12y + 2x + 6\right) = -32y - 12 = \frac{\partial}{\partial x}\left(-32xy - 12x + 16y + 8\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -16y^2 - 12y + 2x + 6\\ \frac{\partial F}{\partial y} &= -32xy - 12x + 16y + 8 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-16y^2 - 12y + 2x + 6)\,\partial x = -16xy^2 - 12xy + x^2 + 6x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-32xy - 12x + 16y + 8)\,\partial y = -16xy^2 - 12xy + 8y^2 + 8y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 8y^2 + 8y$ and $ \tilde{C}(x) = x^2 + 6x. $ So $$ F(x,y) = -16xy^2 - 12xy + x^2 + 8y^2 + 6x + 8y. $$
- The solution is $F(x,y) = K.$ $$ -16xy^2 - 12xy + x^2 + 8y^2 + 6x + 8y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett