Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (2y + 10x) dx + (15y^2 + 8y + 2x + 6) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(2y + 10x\right) = 2 = \frac{\partial}{\partial x}\left(15y^2 + 8y + 2x + 6\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 2y + 10x\\ \frac{\partial F}{\partial y} &= 15y^2 + 8y + 2x + 6 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (2y + 10x)\,\partial x = 2xy + 5x^2 + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (15y^2 + 8y + 2x + 6)\,\partial y = 5y^3 + 4y^2 + 2xy + 6y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 5y^3 + 4y^2 + 6y$ and $ \tilde{C}(x) = 5x^2. $ So $$ F(x,y) = 5y^3 + 2xy + 5x^2 + 4y^2 + 6y. $$
- The solution is $F(x,y) = K.$ $$ 5y^3 + 2xy + 5x^2 + 4y^2 + 6y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett