Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-4y^2 - 20y - 12) dx + (-9y^2 - 8xy - 10y - 20x - 7) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-4y^2 - 20y - 12\right) = -8y - 20 = \frac{\partial}{\partial x}\left(-9y^2 - 8xy - 10y - 20x - 7\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -4y^2 - 20y - 12\\ \frac{\partial F}{\partial y} &= -9y^2 - 8xy - 10y - 20x - 7 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-4y^2 - 20y - 12)\,\partial x = -4xy^2 - 20xy - 12x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-9y^2 - 8xy - 10y - 20x - 7)\,\partial y = -3y^3 - 4xy^2 - 5y^2 - 20xy - 7y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -3y^3 - 5y^2 - 7y$ and $ \tilde{C}(x) = -12x. $ So $$ F(x,y) = -4xy^2 - 3y^3 - 20xy - 5y^2 - 12x - 7y. $$
- The solution is $F(x,y) = K.$ $$ -4xy^2 - 3y^3 - 20xy - 5y^2 - 12x - 7y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett