Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (8y^2 - 20y + 10x + 2) dx + (-15y^2 + 16xy - 12y - 20x + 23) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(8y^2 - 20y + 10x + 2\right) = 16y - 20 = \frac{\partial}{\partial x}\left(-15y^2 + 16xy - 12y - 20x + 23\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 8y^2 - 20y + 10x + 2\\ \frac{\partial F}{\partial y} &= -15y^2 + 16xy - 12y - 20x + 23 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (8y^2 - 20y + 10x + 2)\,\partial x = 8xy^2 - 20xy + 5x^2 + 2x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-15y^2 + 16xy - 12y - 20x + 23)\,\partial y = -5y^3 + 8xy^2 - 6y^2 - 20xy + 23y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -5y^3 - 6y^2 + 23y$ and $ \tilde{C}(x) = 5x^2 + 2x. $ So $$ F(x,y) = -5y^3 + 8xy^2 - 20xy + 5x^2 - 6y^2 + 2x + 23y. $$
- The solution is $F(x,y) = K.$ $$ -5y^3 + 8xy^2 - 20xy + 5x^2 - 6y^2 + 2x + 23y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett