Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (16xy + 4x + 16y + 7) dx + (8x^2 + 16x + 13) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(16xy + 4x + 16y + 7\right) = 16x + 16 = \frac{\partial}{\partial x}\left(8x^2 + 16x + 13\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 16xy + 4x + 16y + 7\\ \frac{\partial F}{\partial y} &= 8x^2 + 16x + 13 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (16xy + 4x + 16y + 7)\,\partial x = 8x^2y + 2x^2 + 16xy + 7x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (8x^2 + 16x + 13)\,\partial y = 8x^2y + 16xy + 13y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 13y$ and $ \tilde{C}(x) = 2x^2 + 7x. $ So $$ F(x,y) = 8x^2y + 2x^2 + 16xy + 7x + 13y. $$
- The solution is $F(x,y) = K.$ $$ 8x^2y + 2x^2 + 16xy + 7x + 13y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett