Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-20y^2 - 12y - 1) dx + (15y^2 - 40xy + 22y - 12x + 7) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-20y^2 - 12y - 1\right) = -40y - 12 = \frac{\partial}{\partial x}\left(15y^2 - 40xy + 22y - 12x + 7\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -20y^2 - 12y - 1\\ \frac{\partial F}{\partial y} &= 15y^2 - 40xy + 22y - 12x + 7 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-20y^2 - 12y - 1)\,\partial x = -20xy^2 - 12xy - x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (15y^2 - 40xy + 22y - 12x + 7)\,\partial y = 5y^3 - 20xy^2 + 11y^2 - 12xy + 7y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 5y^3 + 11y^2 + 7y$ and $ \tilde{C}(x) = -x. $ So $$ F(x,y) = -20xy^2 + 5y^3 - 12xy + 11y^2 - x + 7y. $$
- The solution is $F(x,y) = K.$ $$ -20xy^2 + 5y^3 - 12xy + 11y^2 - x + 7y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett