Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (20y^2 - 20y + 8x - 20) dx + (15y^2 + 40xy + 38y - 20x - 15) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(20y^2 - 20y + 8x - 20\right) = 40y - 20 = \frac{\partial}{\partial x}\left(15y^2 + 40xy + 38y - 20x - 15\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 20y^2 - 20y + 8x - 20\\ \frac{\partial F}{\partial y} &= 15y^2 + 40xy + 38y - 20x - 15 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (20y^2 - 20y + 8x - 20)\,\partial x = 20xy^2 - 20xy + 4x^2 - 20x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (15y^2 + 40xy + 38y - 20x - 15)\,\partial y = 5y^3 + 20xy^2 + 19y^2 - 20xy - 15y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 5y^3 + 19y^2 - 15y$ and $ \tilde{C}(x) = 4x^2 - 20x. $ So $$ F(x,y) = 5y^3 + 20xy^2 - 20xy + 4x^2 + 19y^2 - 20x - 15y. $$
- The solution is $F(x,y) = K.$ $$ 5y^3 + 20xy^2 - 20xy + 4x^2 + 19y^2 - 20x - 15y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett