Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (15y^2 - 20y + 1) dx + (30xy - 20x - 6y - 1) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(15y^2 - 20y + 1\right) = 30y - 20 = \frac{\partial}{\partial x}\left(30xy - 20x - 6y - 1\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 15y^2 - 20y + 1\\ \frac{\partial F}{\partial y} &= 30xy - 20x - 6y - 1 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (15y^2 - 20y + 1)\,\partial x = 15xy^2 - 20xy + x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (30xy - 20x - 6y - 1)\,\partial y = 15xy^2 - 20xy - 3y^2 - y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -3y^2 - y$ and $ \tilde{C}(x) = x. $ So $$ F(x,y) = 15xy^2 - 20xy - 3y^2 + x - y. $$
- The solution is $F(x,y) = K.$ $$ 15xy^2 - 20xy - 3y^2 + x - y = K $$
If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett