Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (2xy - 2x + 2y + 6) dx + (-9y^2 + x^2 - 6y + 2x) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(2xy - 2x + 2y + 6\right) = 2x + 2 = \frac{\partial}{\partial x}\left(-9y^2 + x^2 - 6y + 2x\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 2xy - 2x + 2y + 6\\ \frac{\partial F}{\partial y} &= -9y^2 + x^2 - 6y + 2x \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (2xy - 2x + 2y + 6)\,\partial x = x^2y - x^2 + 2xy + 6x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-9y^2 + x^2 - 6y + 2x)\,\partial y = -3y^3 + x^2y - 3y^2 + 2xy + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -3y^3 - 3y^2$ and $ \tilde{C}(x) = -x^2 + 6x. $ So $$ F(x,y) = x^2y - 3y^3 + 2xy - x^2 - 3y^2 + 6x. $$
- The solution is $F(x,y) = K.$ $$ x^2y - 3y^3 + 2xy - x^2 - 3y^2 + 6x = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett