Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-24xy - 44x - 9y - 12) dx + (-12x^2 - 9x + 4) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-24xy - 44x - 9y - 12\right) = -24x - 9 = \frac{\partial}{\partial x}\left(-12x^2 - 9x + 4\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -24xy - 44x - 9y - 12\\ \frac{\partial F}{\partial y} &= -12x^2 - 9x + 4 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-24xy - 44x - 9y - 12)\,\partial x = -12x^2y - 22x^2 - 9xy - 12x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-12x^2 - 9x + 4)\,\partial y = -12x^2y - 9xy + 4y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 4y$ and $ \tilde{C}(x) = -22x^2 - 12x. $ So $$ F(x,y) = -12x^2y - 22x^2 - 9xy - 12x + 4y. $$
- The solution is $F(x,y) = K.$ $$ -12x^2y - 22x^2 - 9xy - 12x + 4y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett