Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-6y^2 + 6y + 10) dx + (-12xy + 6x - 6y + 9) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-6y^2 + 6y + 10\right) = -12y + 6 = \frac{\partial}{\partial x}\left(-12xy + 6x - 6y + 9\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -6y^2 + 6y + 10\\ \frac{\partial F}{\partial y} &= -12xy + 6x - 6y + 9 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-6y^2 + 6y + 10)\,\partial x = -6xy^2 + 6xy + 10x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-12xy + 6x - 6y + 9)\,\partial y = -6xy^2 + 6xy - 3y^2 + 9y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = -3y^2 + 9y$ and $ \tilde{C}(x) = 10x. $ So $$ F(x,y) = -6xy^2 + 6xy - 3y^2 + 10x + 9y. $$
- The solution is $F(x,y) = K.$ $$ -6xy^2 + 6xy - 3y^2 + 10x + 9y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett