Exact Equations
Additional Examples
- We write the equation in the standard form,
M dx + N dy = 0 . $$ (-6xy - 4x + 3y + 4) dx + (-3x^2 + 3x + 10) dy = 0 $$ - We test for exactness. $$\frac{\partial}{\partial y}\left(-6xy - 4x + 3y + 4\right) = -6x + 3 = \frac{\partial}{\partial x}\left(-3x^2 + 3x + 10\right) $$ so the equation is exact.
- Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= -6xy - 4x + 3y + 4\\ \frac{\partial F}{\partial y} &= -3x^2 + 3x + 10 \end{align}$$
- Integrate the first partial differential equation. $$ F(x,y) = \int (-6xy - 4x + 3y + 4)\,\partial x = -3x^2y - 2x^2 + 3xy + 4x + C(y) $$
- Integrate the second partial differential equation. $$ F(x,y) = \int (-3x^2 + 3x + 10)\,\partial y = -3x^2y + 3xy + 10y + \tilde{C}(x) $$
- Equate the expressions for F(x,y). Matching the expressions up, we find $C(y) = 10y$ and $ \tilde{C}(x) = -2x^2 + 4x. $ So $$ F(x,y) = -3x^2y - 2x^2 + 3xy + 4x + 10y. $$
- The solution is $F(x,y) = K.$ $$ -3x^2y - 2x^2 + 3xy + 4x + 10y = K $$
If you have any problems with this page, please contact bennett@ksu.edu.
©1994-2025 Andrew G. Bennett