Math 340 Home, Textbook Contents, Online Homework Home

Warning: MathJax requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.

Math 340 Capstone Homework
Solutions to Odd Exercises

Note: Because these problems use rounded values for the data, the answers you get will often differ slightly from the actual values you will find in a reference work.

1. $5.97 \times 10^{24} kg$.

3. $1.899 \times 10^{27} kg$.

5. $8.49 \times 10^{11} m$.

7. $1.3 \times 10^{16} m$.

9. Approximately 54,500 m/sec.

11. $1.24 \times 10^{10} sec$ (which is about 393 years).

13. Approximately 69,500 m/sec.

15. Since the transverse component of acceleration is still 0, the proof of the second law in the text works exactly the same for Bennett's law of gravity as it does for Newton's.

17. Our key equation is $$ r'' - r(\theta')^2 = - \frac{GM}{r^n}. $$ Using the conservation of angular momentum, $\displaystyle \theta' = \frac{c}{r^2}$, we get $$ \begin{align} r'' - r(\theta')^2 &= -\frac{GM}{r^n} \\ r'' - r\left(\frac{c}{r^2}\right)^2 &= -\frac{GM}{r^n} \\ r'' - \left(\frac{c^2}{r^3}\right) &= -\frac{GM}{r^n} \\ -\frac{r^2r''}{c^2} + \frac{1}{r} &= \left(\frac{GM}{c^2}\right)r^{2-n} \end{align} $$ Then making the substitution $u=1/r$, which leads to $\displaystyle \frac{d^2u}{d\theta^2} = -\frac{r^2r''}{c^2}$ as shown in the text we get $$ \frac{d^2u}{d\theta^2} + u = \left(\frac{GM}{c^2}\right)u^{n-2}. $$ For this to be a linear equation, we can only have $u$ to the zeroth or first power, so we only get a linear equation if $n=2$ or $n=3$.

19. We want points $(x,y)$ where the sum of the distances to $(f,0)$ and $(-f,0)$ is $2a$. From the distance formula we thus get $$ \sqrt{(x-f)^2+y^2} + \sqrt{(x+f)^2+y^2} = 2a. $$ To simplify this equation we isolate one of the square roots and square both sides, then isolate the remaining square root and square both sides again as follows. $$ \begin{align} \sqrt{(x-f)^2+y^2} + \sqrt{(x+f)^2+y^2} &= 2a \\ \sqrt{(x-f)^2+y^2} &= 2a - \sqrt{(x+f)^2+y^2} \\ (x-f)^2+y^2 &= 4a^2 - 4a\sqrt{(x+f)^2+y^2} + (x+f)^2 + y^2 \\ x^2 - 2xf + f^2 +y^2 &= 4a^2 - 4a\sqrt{(x+f)^2+y^2} + x^2+2xf+f^2 + y^2 \\ -2xf &= 4a^2 - 4a\sqrt{(x+f)^2+y^2} + 2xf \\ 4a\sqrt{(x+f)^2+y^2} &= 4a^2+4xf \\ a\sqrt{(x+f)^2+y^2} &= a^2+xf \\ a^2\left((x+f)^2 + y^2\right) &= a^4 +2a^2xf + x^2f^2 \\ a^2x^2 + 2a^2xf + a^2f^2 + a^2y^2 &= a^2 + 2a^2xf + x^2f^2 \\ (a^2-f^2)x^2 + a^2y^2 &= a^4-a^2f^2 \\ (a^2-f^2)x^2 + a^2y^2 &= a^2(a^2-f^2) \\ \left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{a^2 - f^2}\right) &=1. \end{align} $$ 21. We compute $$ \begin{align} b^2 + f^2 &= \frac{e^2p^2}{1-e^2} + \frac{e^4p^2}{(1-e^2)^2} \\ &= \frac{(1-e^2)e^2p^2}{(1-e^2)^2} + \frac{e^4p^2}{(1-e^2)^2} \\ &= \frac{e^2p^2 - e^4p^2 + e^4p^2}{(1-e^2)^2} \\ &= \frac{e^2p^2}{(1-e^2)^2} \\ &= \left(\frac{ep}{1-e^2}\right)^2 \\ &= a^2. \end{align} $$


If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010 Andrew G. Bennett